Continual Prototype Evolution: Learning Online from Non-Stationary Data Streams

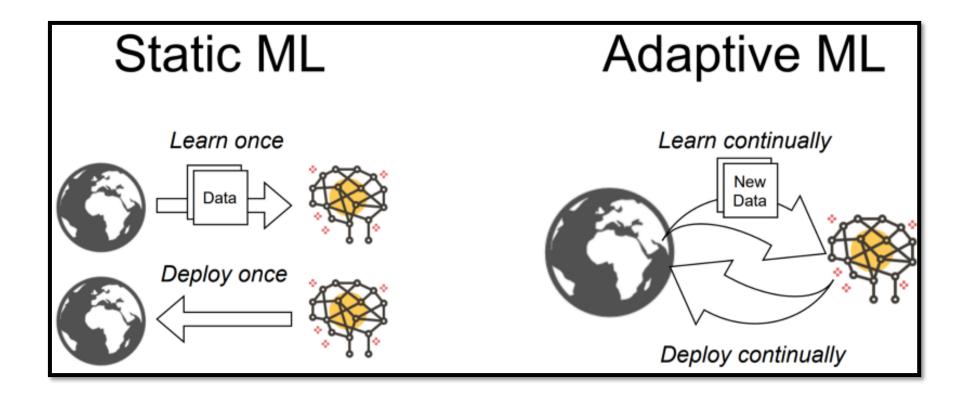
Matthias De Lange KU Leuven matthias.delange@kuleuven.be Tinne Tuytelaars KU Leuven tinne.tuytelaars@kuleuven.be

https://arxiv.org/pdf/2009.00919.pdf

Continual Prototype Evolution (CoPE)

Questions? matthias.delange@kuleuven.be

KU LEUVEN



Roadmap

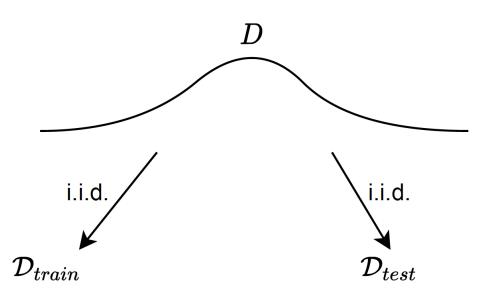
- What is Continual Learning?
- How to learn from data streams?
- Why representation learning?
- Continual Prototype Evolution (CoPE)
 - Evolving prototypes
 - PPP-loss
 - Balanced replay

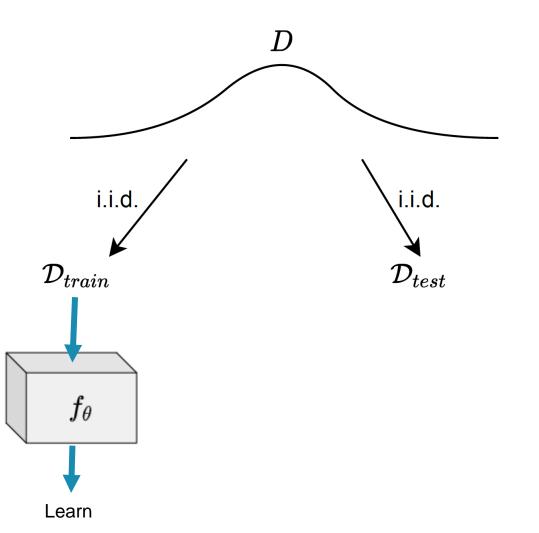
Follow along:

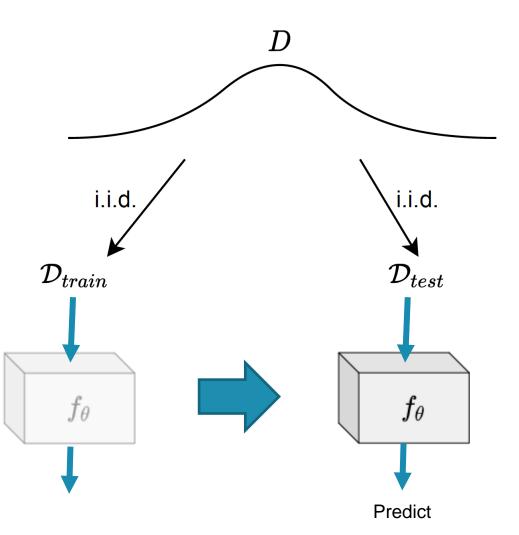
https://arxiv.org/pdf/2009.00919.pdf

Questions? matthias.delange@kuleuven.be

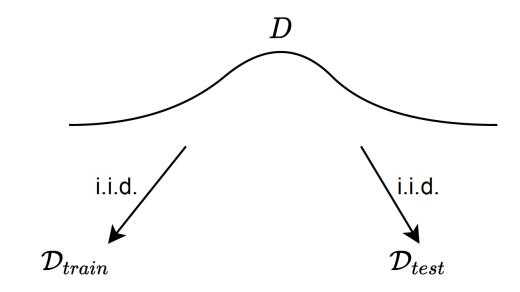
KU LEUVEN





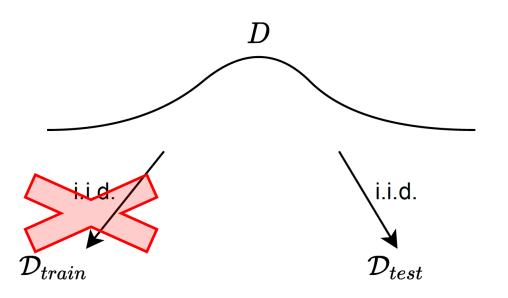


- Once trained, once deployed
- Deployed system is static over time
- Any changes? Retrain & Redeploy

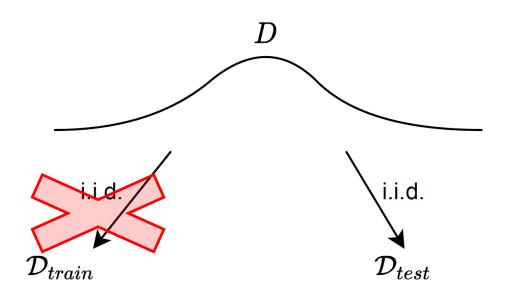


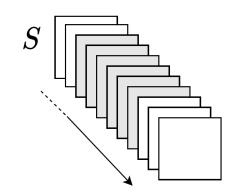
EVER CHANGING

In Continual Learning



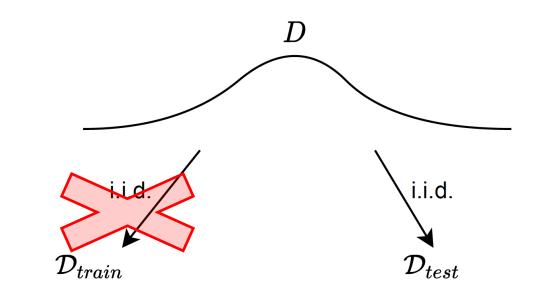
In Continual Learning

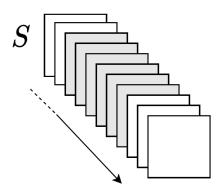


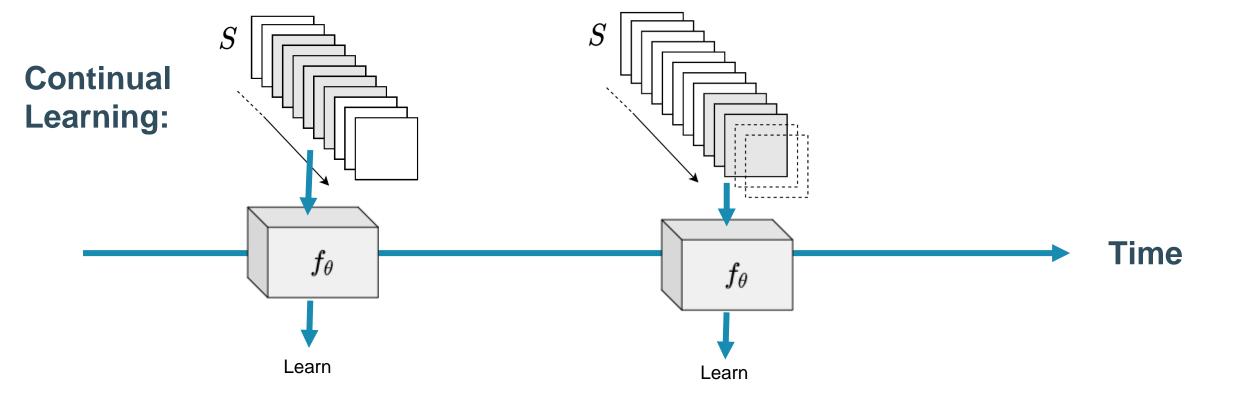


In Continual Learning

- Available training data changes over time
- Assumptions on D determined by \mathcal{D}_{test}
 - What should the system learn?

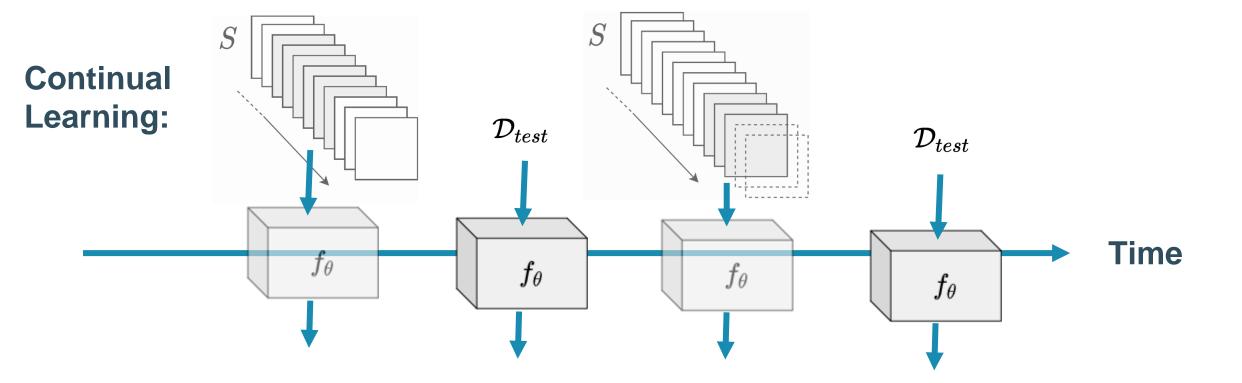






Questions? matthias.delange@kuleuven.be

KU LEUVEN



- We use our static test set to measure performance of our system
- Over different points in time

Used Metrics

- With D_{test} static, iid over seen/all classes
- Average Accuracy (Avg over tasks in \mathcal{D}_{test})

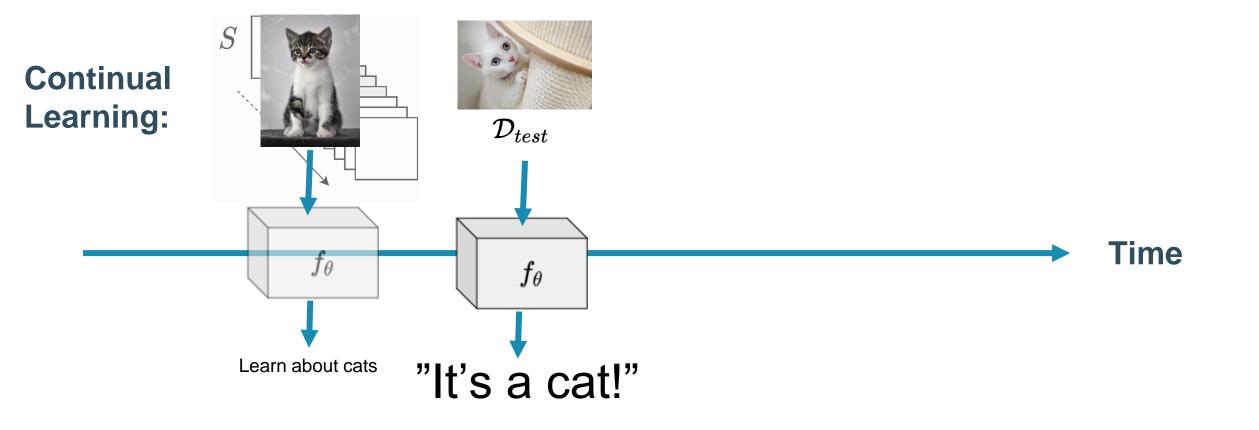
$$A_T = rac{1}{T}\sum_{i=1}^T a_{T,i}$$

 $a_{ ext{learned until}X, ext{ eval on}X}$

• Average Forgetting (Avg over tasks in \mathcal{D}_{test})

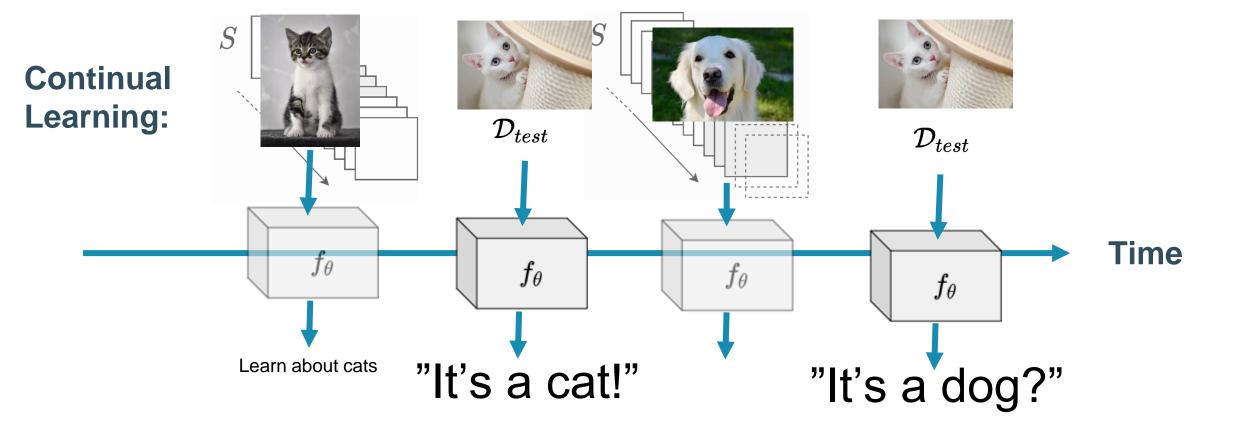
$$F_T = rac{1}{T-1}\sum_{i=1}^{T-1}a_{i,i} - a_{T,i}$$

 $a_{ ext{learned until}X, ext{ eval on}X}$

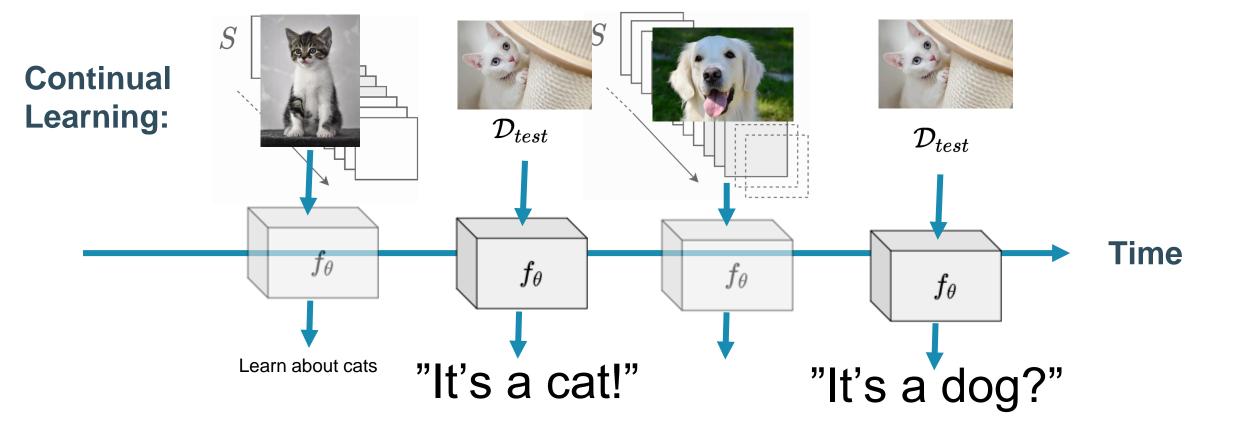


21

Continual Prototype Evolution (CoPE)



Continual Prototype Evolution (CoPE)

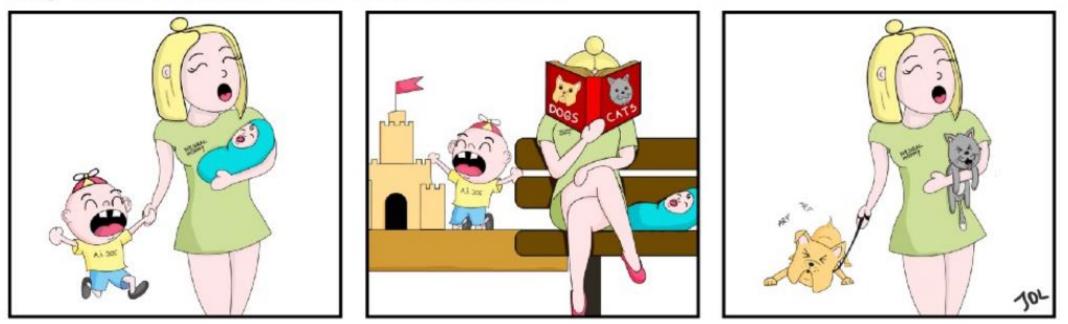


Continual Learning is hard in Neural Networks! → Very high Forgetting:

"Catastrophic Forgetting"

23

Why neural networks make terrible mothers...



An illustration of catastrophic forgetting in neural networks. Cartoon credits @Jasper De Lange.

24

Roadmap

- What is Continual Learning?
- How to learn from data streams?
- Why representation learning?
- Continual Prototype Evolution (CoPE)
 - Evolving prototypes
 - PPP-loss
 - Balanced replay

Follow along:

https://arxiv.org/pdf/2009.00919.pdf

25

Questions? matthias.delange@kuleuven.be

KU LEUVEN

Current continual learning paradigms

continual learningEvalTrain[1]task incr. $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ \rightarrow Task transitionsclass incr. $(\mathbf{x}_i, \mathbf{y}_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ \rightarrow Class-subset transitionsdomain incr. $(\mathbf{x}_i, \mathbf{y}_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ \rightarrow Domain transitions

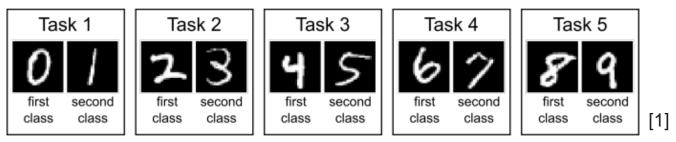
Current continual learning paradigms

continual learningEvalTrain[1] task incr. $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ \rightarrow Task transitionsclass incr. $(\mathbf{x}_i, \mathbf{y}_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ \rightarrow Class-subset transitionsdomain incr. $(\mathbf{x}_i, \mathbf{y}_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ \rightarrow Domain transitions

What exactly is a task?

What exactly is a task?

• Grouped data subset by designer \rightarrow Explicit bias by design



• Algorithmically, e.g. every K new classes \rightarrow Implicit bias by design

28

KU LEUVEN

Current continual learning paradigms

continual learningEvalTrain[1]task incr. $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ \rightarrow Task transitionsclass incr. $(\mathbf{x}_i, \mathbf{y}_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ \rightarrow Class-subset transitionsdomain incr. $(\mathbf{x}_i, \mathbf{y}_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ \rightarrow Domain transitions

What exactly is a task? How to define task-free settings?

Current continual learning paradigms

continual learningEvalTrain[1]task incr. $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ \rightarrow Task transitionsclass incr. $(\mathbf{x}_i, \mathbf{y}_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ \rightarrow Class-subset transitionsdomain incr. $(\mathbf{x}_i, \mathbf{y}_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ \rightarrow Domain transitions

What exactly is a task? How to define task-free settings? What resources are available?

Current continual learning paradigms

continual learningEvalTrain[1]task incr. $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ \rightarrow class incr. $(\mathbf{x}_i, \mathbf{y}_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ \rightarrow domain incr. $(\mathbf{x}_i, \mathbf{y}_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ \rightarrow

 \rightarrow Task transitions

 \rightarrow Class-subset transitions

 \rightarrow Domain transitions

What exactly is a task? How to define task-free settings? What resources are available?

What information is available when?

Current continual learning paradigms

continual learningEvalTrain[1]task incr. $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ \rightarrow class incr. $(\mathbf{x}_i, \mathbf{y}_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ \rightarrow domain incr. $(\mathbf{x}_i, \mathbf{y}_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ \rightarrow

- \rightarrow Task transitions
- \rightarrow Class-subset transitions
- \rightarrow Domain transitions

What exactly is a task? How to define task-free settings? What resources are available?

What information is available when? How are training & testing interacting?

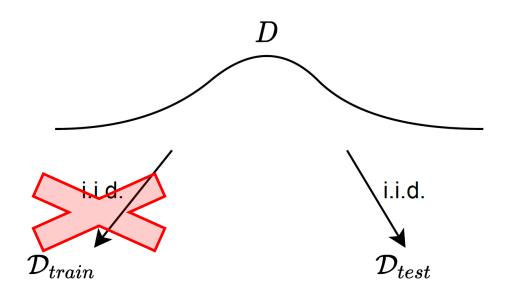
Current continual learning paradigms

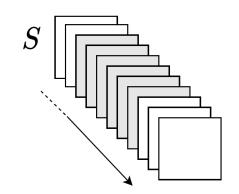
continual learningEvalTrain[1]task incr. $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ class incr. $(\mathbf{x}_i, \mathbf{y}_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ domain incr. $(\mathbf{x}_i, \mathbf{y}_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$

- \rightarrow Task transitions
- \rightarrow Class-subset transitions
- \rightarrow Domain transitions

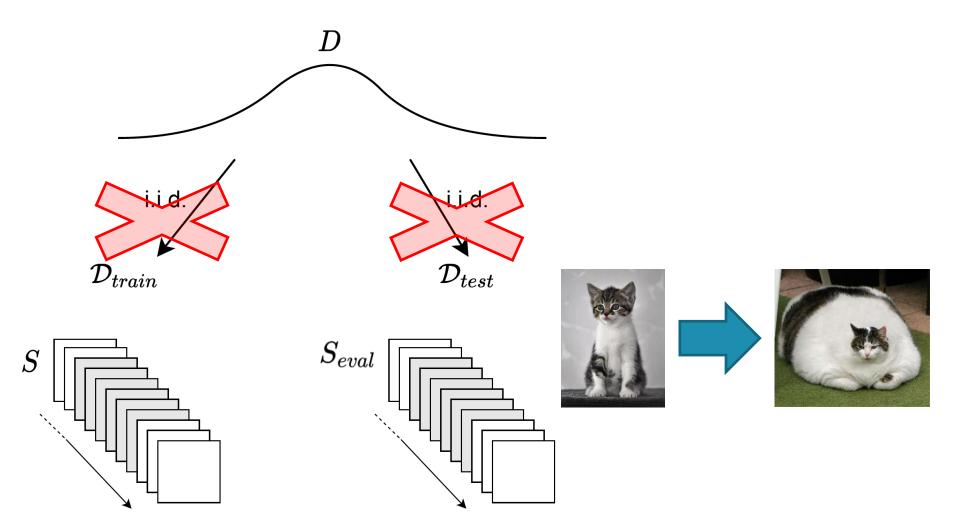
What exactly is a task? How to define task-free settings? What resources are available? What information is available when? How are training & testing interacting? What about drifting concepts?

Sidenote: Concept Drift





Sidenote: Concept Drift



Current continual learning paradigms

continual learningEvalTrain[1]task incr. $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ class incr. $(\mathbf{x}_i, \mathbf{y}_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$ domain incr. $(\mathbf{x}_i, \mathbf{y}_i)$ $(\mathbf{x}_i, \mathbf{y}_i, t_i)$

- \rightarrow Task transitions
- \rightarrow Class-subset transitions
- \rightarrow Domain transitions

What exactly is a task? How to define task-free settings? What resources are available? What information is available when? How are training & testing interacting? What about drifting concepts?

- Operate independently
- Generalizable to any data stream
 - No notion of task required

How are training & testing interacting?

What exactly is a task? How to define task-free settings?

Generalizable to any evaluation

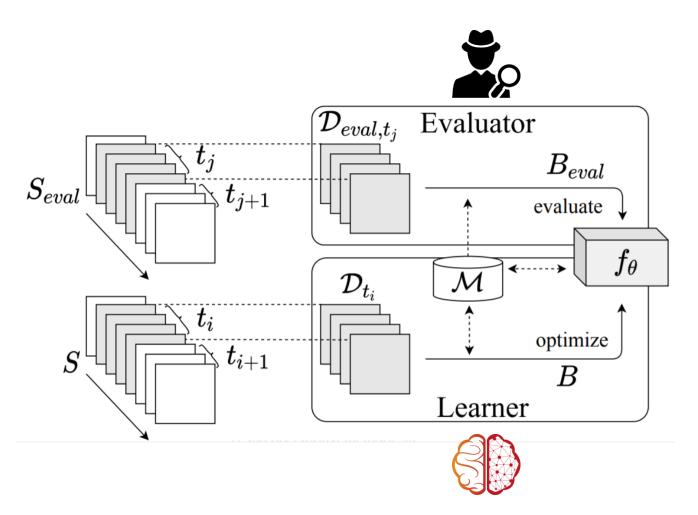
Concept drift V Continual Learning

What about drifting concepts?

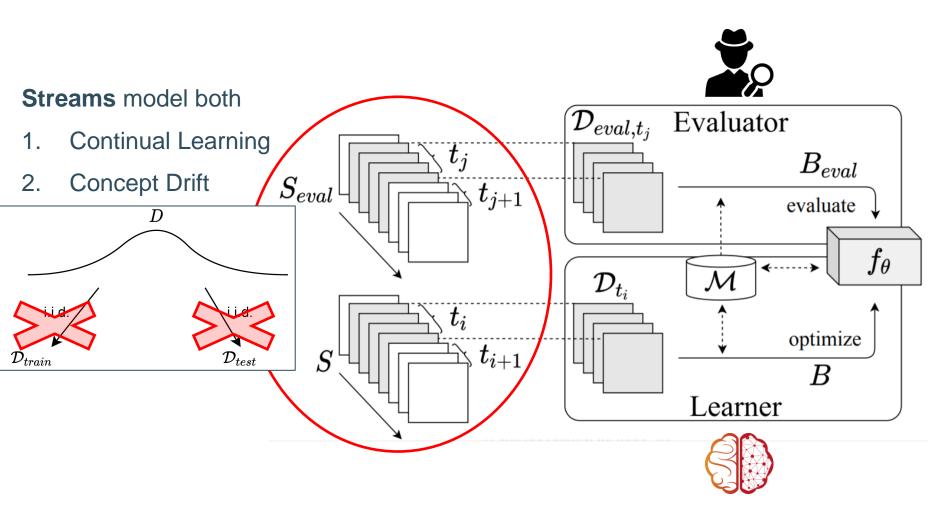
• Horizon \mathcal{D}_t Operational memory \mathcal{M}

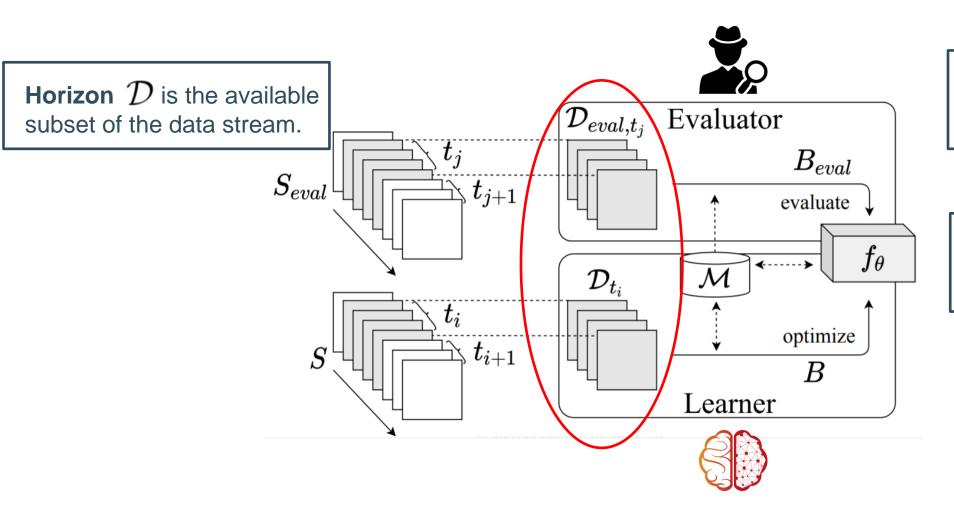
What information is available when? What resources are available?

Questions? matthias.delange@kuleuven.be



Questions? matthias.delange@kuleuven.be





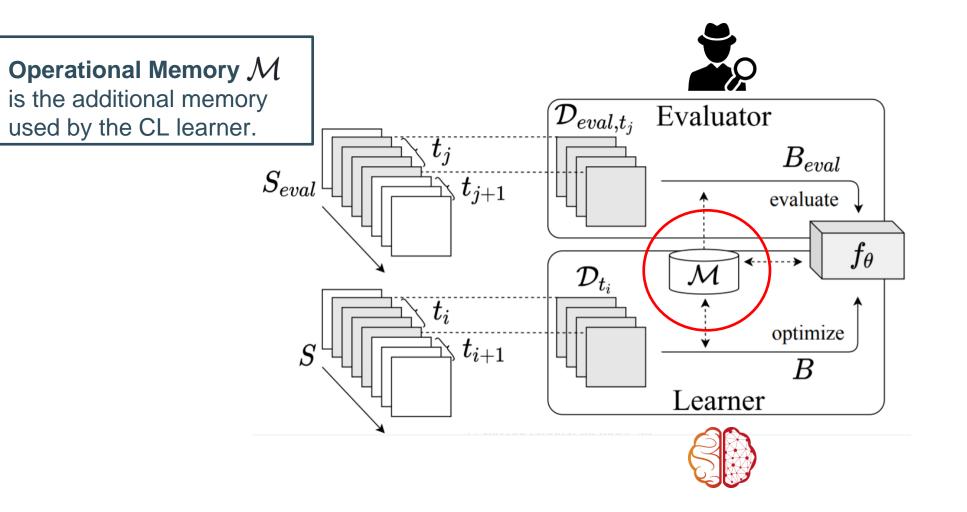
Offline (std ML) $\mathcal{D} = S$ Online $\mathcal{D} = B$

Models all CL-paradigms based on transition $\mathcal{D}_{t_i o t_{i+1}}$

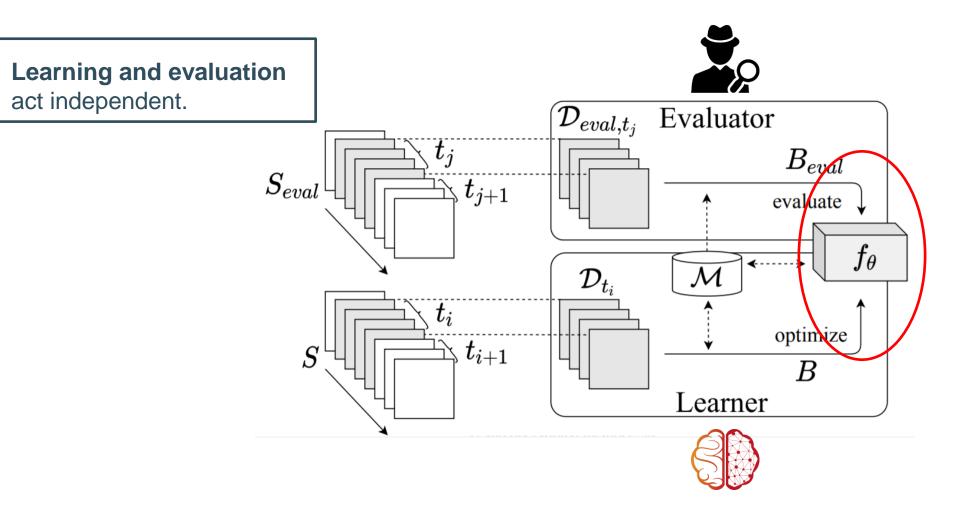
→ Data incremental learning

- Learning from data streams? Data incremental learning!
 - = Task-free learning/streaming learning/task-agnostic learning

	evaluator		learner		-
	sample	sample	horizon D	iid	
online learning	$(\mathbf{x}_i, \mathbf{y}_i)$	$(\mathbf{x}_i, \mathbf{y}_i)$	batch ($\mathcal{D} = B$)	\checkmark	_
continual learning task incr.	$(\mathbf{x}_i, \mathbf{y}_i, t_i)$	$(\mathbf{x}_i, \mathbf{y}_i, t_i)$	task ($\mathcal{D}_{t=t_i}$)	x	\rightarrow Task transitions
class incr. domain incr.	$egin{array}{l} (\mathbf{x}_i,\mathbf{y}_i) \ (\mathbf{x}_i,\mathbf{y}_i) \end{array}$	$\begin{aligned} & (\mathbf{x}_i, \mathbf{y}_i, t_i) \\ & (\mathbf{x}_i, \mathbf{y}_i, t_i) \end{aligned}$	class subset $(\mathcal{D}_{t=t_i})$ domain $(\mathcal{D}_{t=t_i})$	X X	→ Class-subset transitions → Domain transitions
data incr.	$(\mathbf{x}_i,\mathbf{y}_i)$	$(\mathbf{x}_i, \mathbf{y}_i)$	any subset $(B \le \mathcal{D} < S)$	X	→ Data stream subsets, no assumption



42



Roadmap

- What is Continual Learning?
- How to learn from data streams?
- Why representation learning?
- Continual Prototype Evolution (CoPE)
 - Evolving prototypes
 - Balanced replay
 - PPP-loss

Follow along:

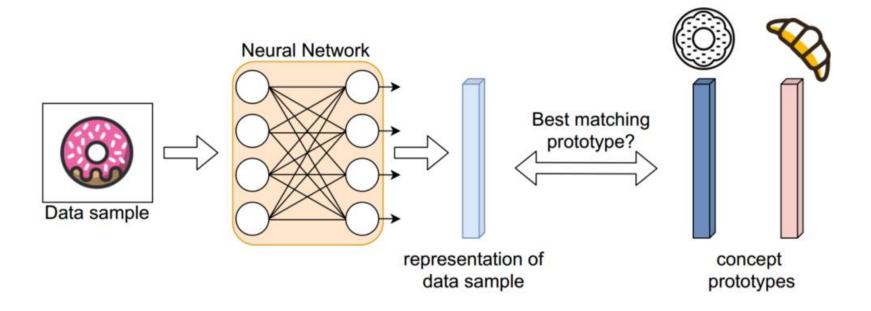
https://arxiv.org/pdf/2009.00919.pdf

Questions? matthias.delange@kuleuven.be

KU LEUVEN

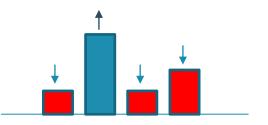
Why representation learning?

- Catastrophic forgetting
 - → Optimization influences entire parameter space!
- Instead, learn a low-dimensional embedding with prototypes



Why representation learning?

- Typical softmax classifier with CE-loss
 - Push away other-class weight vectors
 - Long unseen classes = unpredictable
 - → Contrastive losses: Pair/triplet wise interaction



2 problems to maintain prototypes

- Each update step → Representation space changes
 = Prototypes become stale
- 2. Non-iid data → Some classes never seen again
 = Prototypes become stale

Roadmap

- What is Continual Learning?
- How to learn from data streams?
- Why representation learning?
- Continual Prototype Evolution (CoPE)
 - Evolving prototypes
 - PPP-loss
 - Balanced replay

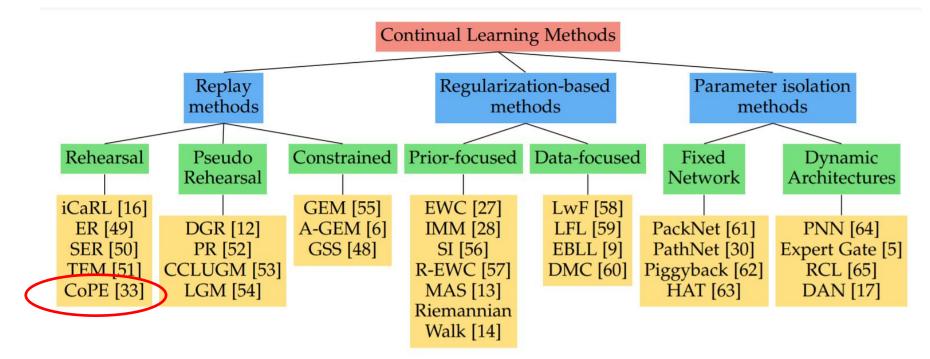
Follow along:

https://arxiv.org/pdf/2009.00919.pdf

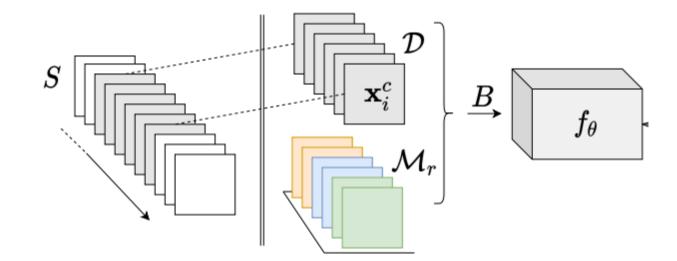
48

Questions? matthias.delange@kuleuven.be

KU LEUVEN



49



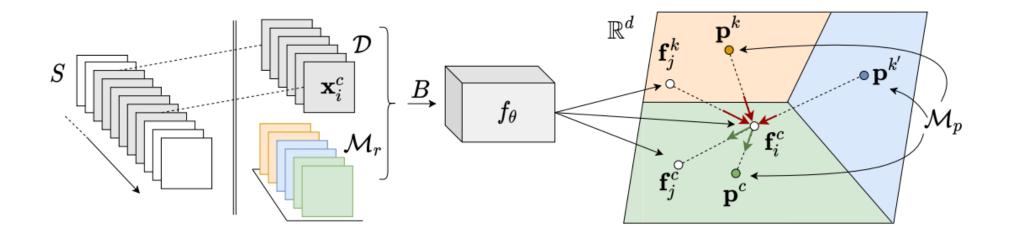
50

Continual Prototype Evolution (CoPE)

Questions? matthias.delange@kuleuven.be

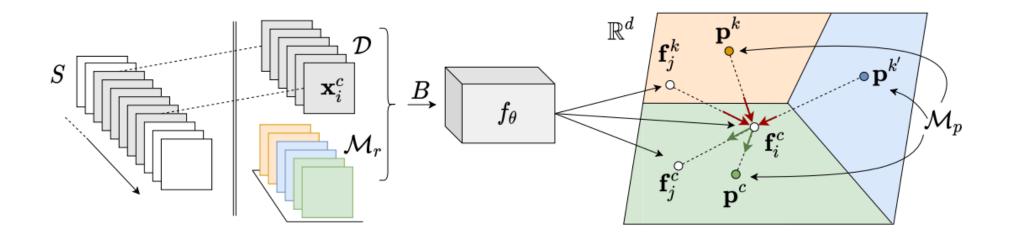
KU LEUVEN

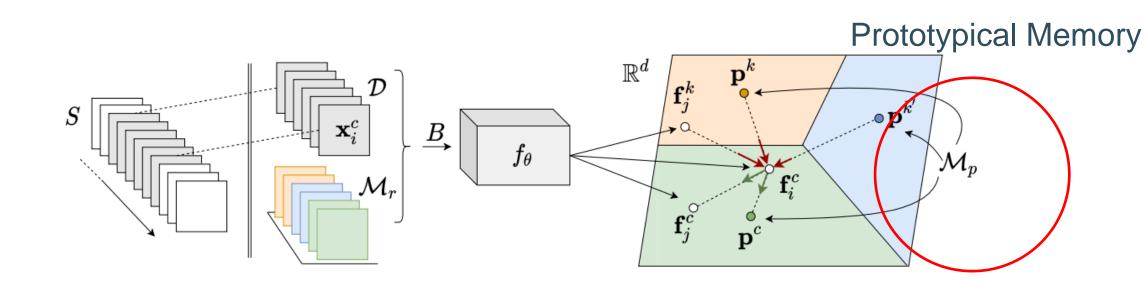
- Operates
 - Online
 - Data incremental
 - Imbalanced data



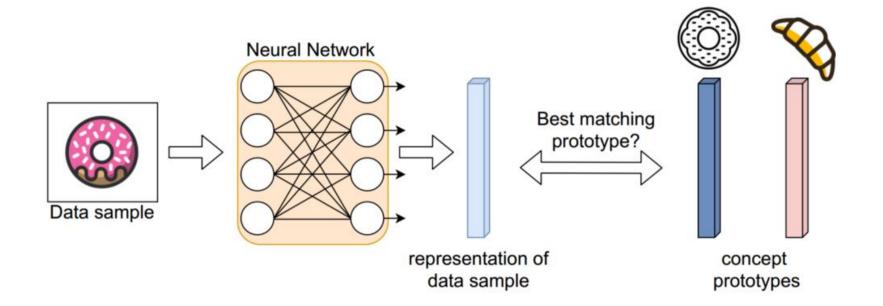
51

- 3 components
 - continually evolving prototypes
 - Pseudo-prototypical proxy loss (PPP-loss)
 - Balanced replay





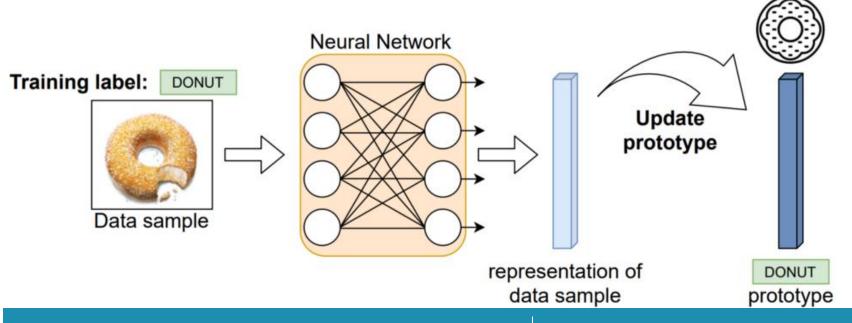
Prototypes → Nearest Neighbour classifier



- CL literature: recalculated <u>on task transitions</u> with the FULL memory
 - **×** Exhaustive recalculation
 - **×** Dependent on task transitions
 - * Static and outdated between task transitions!
- CoPE updates online batch-wise with high momentum
 - ✓ Low resource usage
 - ✓ Only dependent batch transition
 - ✓ Always representative!

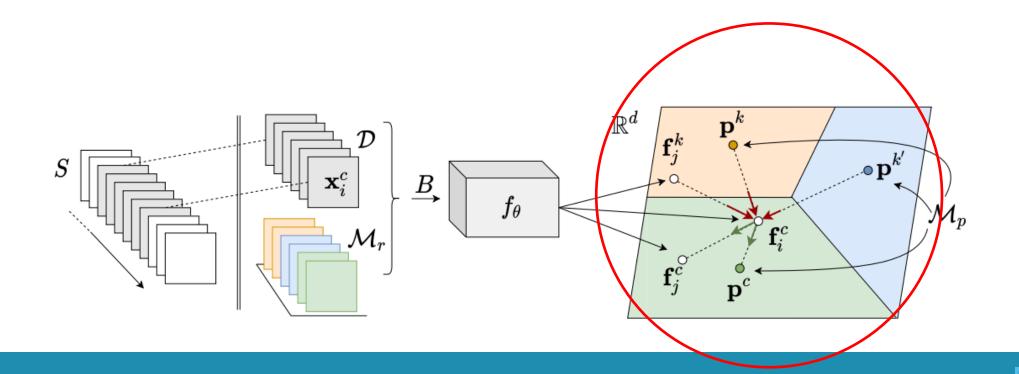
CoPE updates online batch-wise with high momentum

$$\mathbf{p}^{c} \leftarrow \alpha \mathbf{p}^{c} + (1 - \alpha) \bar{\mathbf{p}}^{c}, \text{ s.t. } \bar{\mathbf{p}}^{c} = \frac{1}{|B^{c}|} \sum_{\mathbf{x}^{c} \in B^{c}} f_{\theta}(\mathbf{x}^{c})$$

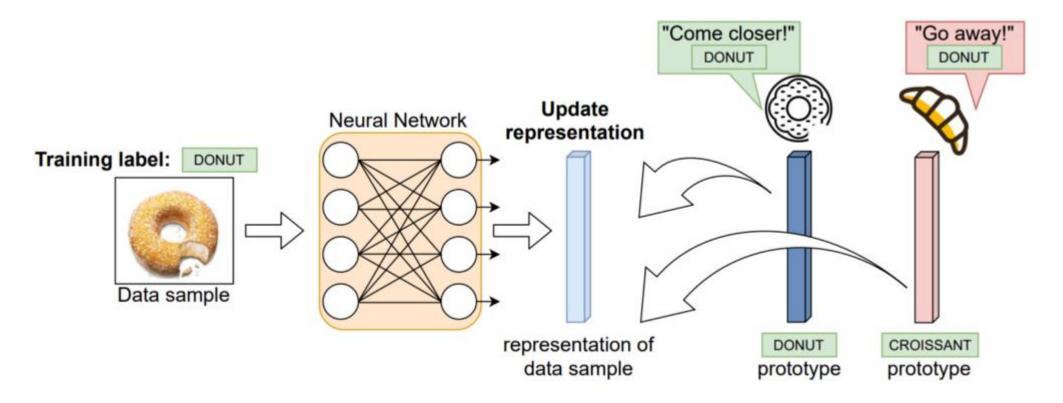


- But, how do the prototypes remain representative?
 - \rightarrow Ever evolving latent space with each update
 - \rightarrow Non-stationary data \rightarrow Catastrophic forgetting

- Other 2 components:
 - PPP-loss
 - Balanced replay



How to update representations?



Questions? matthias.delange@kuleuven.be

- Pseudo-Prototypical Proxy loss
- Batch B not only gives supervision about instance category
 → Also relational information in the latent space!
- Construct per instance, one-against-all subsets:

$$B^c = \{ (\mathbf{x}_i, y_i = c) \in B \}$$
 and B^k

• Main idea

For each instance \mathbf{x}_{i}^{c} in the batch, we want it to

1. Be close to its prototype and remaining class-instances in the batch \rightarrow Attractor set: $\mathbb{P}_i^c = \{\mathbf{p}^c\} \cup \{\hat{\mathbf{p}}_i^c = f_\theta(\mathbf{x}_i^c) \mid \forall \mathbf{x}_i^c \in B^c, i \neq j\}$

2. Push other-class instances away

 \rightarrow Repellor set: $\mathbb{U}_i^c = \{\mathbf{p}^c, \ \hat{\mathbf{p}}_i^c = f_\theta(\mathbf{x}_i^c)\}$

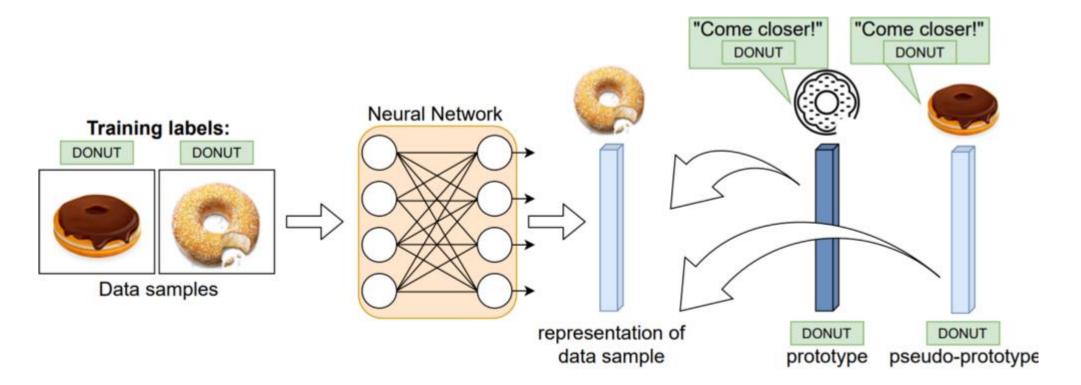
The Pseudo-Prototypical Proxy Loss:

$$\mathcal{L} = -\frac{1}{|B|} \left[\sum_{i} \log P(c | \mathbf{x}_{i}^{c}) + \sum_{i} \sum_{\mathbf{x}_{j}^{k}} \log(1 - P_{i}(c | \mathbf{x}_{j}^{k})) \right]$$

See paper for details.

62

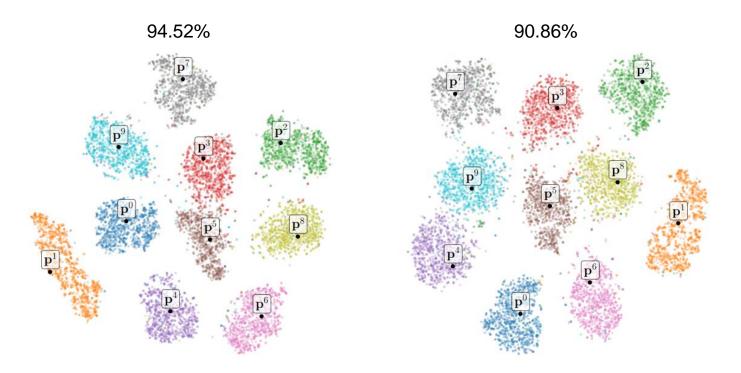
The Pseudo-Prototypical Proxy Loss:



63

PPP-loss ablation

Including/excluding pseudo-prototypes in PPP-loss •



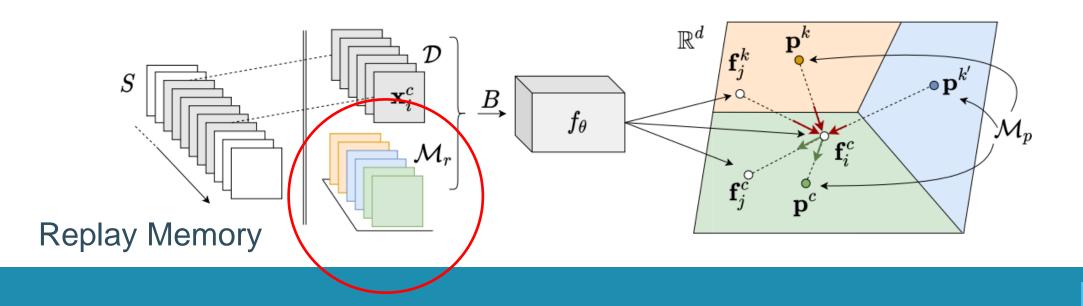
(a) PPP-loss – incl. $\hat{\mathbf{p}}$

(b) PPP-loss – excl. $\hat{\mathbf{p}}$

64

Continual Prototype Evolution (CoPE)

CoPE: Component 3, Balanced replay



CoPE: Component 3, Balanced replay

- Prior: deem each class equally important
 - Storage: Dynamic class memory \mathcal{M}_r^c based on reservoir sampling
 - Easy Retrieval: Uniform = class-balanced batch
 → Keeps all class-prototypes up-to-date

• Replay benefits:

1. Standard replay: Make input batches more iid

CoPE: Component 3, Balanced replay

- Prior: deem each class equally important
 - Storage: Dynamic class memory \mathcal{M}_r^c based on reservoir sampling
 - Easy Retrieval: Uniform = class-balanced batch
 → Keeps all class-prototypes up-to-date
- Replay benefits:
 - 1. Standard replay: Make input batches more iid
 - 2. In representation learning:Latent batch information for all classes

Experiments

- Learner:
 - Online processing with |B|=10
 - S subdivided in task-like sequence (to compare with iCaRL/GEM)
 → CoPE learner is unaware of this! (not provided)
- Evaluator:
 - held-out dataset of static concepts in S_eval, evaluating with the subset of seen concepts Y in D_eval using the accuracy metric.

Prior Work

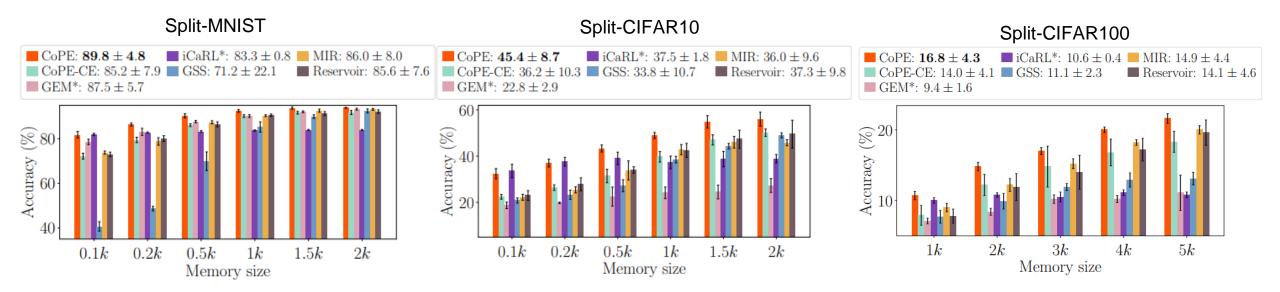
- Online data incremental learning ($\mathcal{D} = B$)
 - Replay: Reservoir, GSS, MIR
 - Parameter isolation methods: CURL, CN-DPM
- Class incremental: iCaRL, GEM

Balanced data streams

	Split-MNIST	Split-CIFAR10	Split-CIFAR100
iid-offline iid-online	$\begin{array}{c} 98.44 \pm 0.02 \\ 96.57 \pm 0.14 \end{array}$	$\begin{array}{c} 83.02 \pm 0.60 \\ 62.31 \pm 1.67 \end{array}$	50.28 ± 0.66 20.10 ± 0.90
finetune GEM iCARL CURL (Rao et al., 2019) DN-CPM (Lee et al., 2020)	$\begin{array}{c} 19.75 \pm 0.05 \\ 93.25 \pm 0.36 \\ 83.95 \pm 0.21 \\ 92.59 \pm 0.66 \\ 93.23 \pm 0.09 \end{array}$	$\begin{array}{c} 18.55 \pm 0.34 \\ 24.13 \pm 2.46 \\ 37.32 \pm 2.66 \\ - \\ 45.21 \pm 0.18 \end{array}$	3.53 ± 0.04 11.12 ± 2.48 10.80 ± 0.37 - 20.10 ± 0.12
reservoir MIR GSS	$\begin{array}{c} 92.16 \pm 0.75 \\ 93.20 \pm 0.36 \\ 92.47 \pm 0.92 \end{array}$	$\begin{array}{c} 42.48 \pm 3.04 \\ 42.80 \pm 2.22 \\ 38.45 \pm 1.41 \end{array}$	$\begin{array}{c} 19.57 \pm 1.79 \\ 20.00 \pm 0.57 \\ 13.10 \pm 0.94 \end{array}$
CoPE-CE CoPE (ours)	$\begin{array}{c} 91.77 \pm 0.87 \\ \textbf{93.94} \pm \textbf{0.20} \end{array}$	$\begin{array}{c} 39.73 \pm 2.26 \\ 48.92 \pm 1.32 \end{array}$	$\begin{array}{c} 18.33 \pm 1.52 \\ \textbf{21.62} \pm \textbf{0.69} \end{array}$

71

"Sure dude, but you just tweaked the buffer size?"

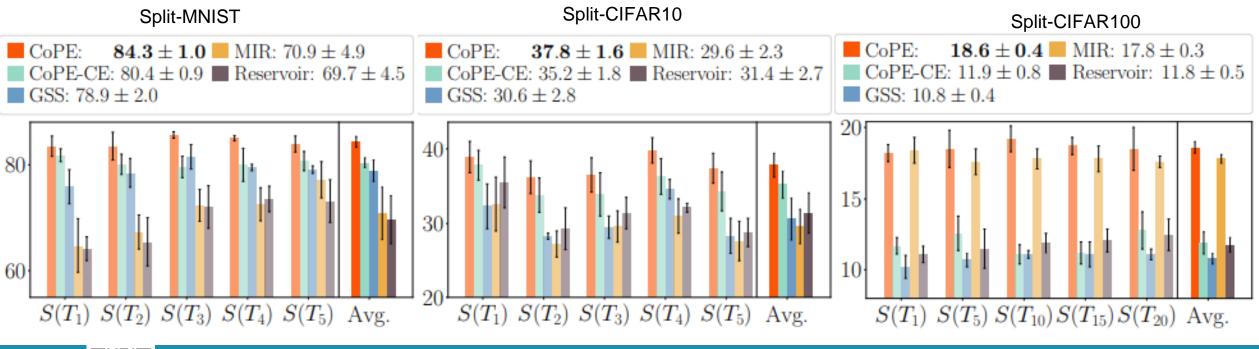


Discrepancy CoPE-CE / CoPE → Efficacy prototypical approach

72

Imbalanced experiments

- Not just the balancing memory scheme (CoPE-CE)
- The PPP-loss encourages prototype-based clusters each update



73

KU LEUVEN

- Learner-evaluator framework
- Data incremental learning
- CoPE

- \rightarrow 2 agents, horizon (task), concept drift
- \rightarrow Any data stream (task info)
- \rightarrow Online data incremental
- → Continually evolving prototypes
- → Balanced replay
- \rightarrow PPP-loss
- Future? → Apply for concept drift, beyond classification/supervised learning

Code https://github.com/mattdl/ContinualPrototypeEvolution

Blog https://ai.kuleuven.be/stories/post/2021-05-10-continual-learning/

75

Continual Prototype Evolution (CoPE)

Questions? matthias.delange@kuleuven.be

KU LEUVEN

ContinualAl https://www.continualai.org/

Free-Access Workshop CVPR https://sites.google.com/view/clvision2021/overview

76

